skip to main content


Search for: All records

Creators/Authors contains: "Guajardo, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. End-to-end encrypted file-sharing systems enable users to share files without revealing the file contents to the storage servers. However, the servers still learn metadata, including user identities and access patterns. Prior work tried to remove such leakage but relied on strong assumptions. Metal (NDSS '20) is not secure against malicious servers. MCORAM (ASIACRYPT '20) provides confidentiality against malicious servers, but not integrity. Titanium is a metadata-hiding file-sharing system that offers confidentiality and integrity against malicious users and servers. Compared with MCORAM, which offers confidentiality against malicious servers, Titanium also offers integrity. Experiments show that Titanium is 5x-200x faster or more than MCORAM. 
    more » « less
  2. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less
  3. Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing sensitive data on a remote server. It is known that there exists a logarithmic communication lower bound on any passive ORAM construction, where the server only acts as the storage service. This overhead, however, was shown costly for some applications. Several active ORAM schemes with server computation have been proposed to overcome this limitation. However, they mostly rely on costly homomorphic encryptions, whose performance is worse than passive ORAM. In this article, we propose S3ORAM, a new multi-server ORAM framework, which featuresO(1) client bandwidth blowup and low client storage without relying on costly cryptographic primitives. Our key idea is to harness Shamir Secret Sharing and a multi-party multiplication protocol on applicable binary tree-ORAM paradigms. This strategy allows the client to instruct the server(s) to perform secure and efficient computation on his/her behalf with a low intervention thereby, achieving a constant client bandwidth blowup and low server computational overhead. Our framework can also work atop a generalk-ary tree ORAM structure (k≥ 2). We fully implemented our framework, and strictly evaluated its performance on a commodity cloud platform (Amazon EC2). Our comprehensive experiments confirmed the efficiency of S3ORAM framework, where it is approximately 10× faster than the most efficient passive ORAM (i.e., Path-ORAM) for a moderate network bandwidth while being three orders of magnitude faster than active ORAM withO(1) bandwidth blowup (i.e., Onion-ORAM). We have open-sourced the implementation of our framework for public testing and adaptation.

     
    more » « less
  4. Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations. In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) clientserver bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation. 
    more » « less